Samuel Dominguez-Amarillo - <div style="text-align: justify; ">Today's&nbsp;buildings are evolving from structures comprising unchanging, static elements scantly able to interact with their surroundings, towards complex systemic compounds with an impact on the environs that entails more than mere anthropic alteration. In pursuit of energy efficiency and true sustainability, buildings must acquire the ability to interact as well as to generate synergies. The most prominent features of this approach are energy management and information flows which, intelligently designed, not only enhance buildings’ capabilities, but also introduce a significant change in their relationship with the surrounds (‘smart cities’) and its inhabitants. This new paradigm calls for revisiting undergraduate architectural instruction, adopting a more complex overview of energy use and management in the design process, regarding buildings as dynamic rather than static entities. The methodology focuses on creating learning environments that favour students’ participation in problem solving and assessment, encouraging teamwork based on case studies and stressing the connection between this new architecture, ICTs included, and social networks as participatory design tools. These ideas were implemented in a pilot learning experience conducted at the University of Seville for undergraduate students. The use of ICTs and the collaboration of non-academic experts were observed to further student promotion and projection beyond the academic environment and introduce them to the professional community.</div>
Teaching Innovation and the Use of Social Networks in Architecture: Learning Building Services Design for Smart and Energy Efficient Buildings
Type
article
Year
2018
Today's buildings are evolving from structures comprising unchanging, static elements scantly able to interact with their surroundings, towards complex systemic compounds with an impact on the environs that entails more than mere anthropic alteration. In pursuit of energy efficiency and true sustainability, buildings must acquire the ability to interact as well as to generate synergies. The most prominent features of this approach are energy management and information flows which, intelligently designed, not only enhance buildings’ capabilities, but also introduce a significant change in their relationship with the surrounds (‘smart cities’) and its inhabitants. This new paradigm calls for revisiting undergraduate architectural instruction, adopting a more complex overview of energy use and management in the design process, regarding buildings as dynamic rather than static entities. The methodology focuses on creating learning environments that favour students’ participation in problem solving and assessment, encouraging teamwork based on case studies and stressing the connection between this new architecture, ICTs included, and social networks as participatory design tools. These ideas were implemented in a pilot learning experience conducted at the University of Seville for undergraduate students. The use of ICTs and the collaboration of non-academic experts were observed to further student promotion and projection beyond the academic environment and introduce them to the professional community.
Citation
Domínguez-Amarillo, Samuel, Jesica Fernandez-Aguera and Patricia Fernandez-Aguera. "Teaching Innovation and the Use of Social Networks in Architecture: Learning Building Services Design for Smart and Energy Efficient Buildings." Archnet-IJAR: International Journal of Architectural Research. 12, 1 (2018): 367-375.

ISSN 1938-7806. OCLC 145980807; LOC 2007212183.
Parent Publications
Authorities
Collections
Copyright
2018 Archnet-IJAR, Archnet, MIT- Massachusetts Institute of Technology
Language
English
Keywords